s1081440作業4
題目敘述: 影像還原練習
附件中的image4 似乎受到某種頻域雜訊干擾,撰寫一個程式嘗試復原此圖像(將圖中雜訊去除)。
開發環境
Windows 11
VSCode Python 3.10.4 + OpenCV 4.7.0
程式碼說明
import cv2
import numpy as np
import matplotlib.pyplot as plt
# 灰階讀取圖片
img = cv2.imread('image4.png', cv2.IMREAD_GRAYSCALE)
# Fast Fourier Transform 取得頻域圖
dft = cv2.dft(np.float32(img), flags=cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)
freq_image = 20*np.log(cv2.magnitude(dft_shift[:, :, 0], dft_shift[:, :, 1]))
# 利用threshhold找出高頻干擾的位置
# (794, 377) (805, 411) (788, 441) (810, 509) (790, 542) (805, 573)
noise_img = cv2.threshold(freq_image, 250, 255, cv2.THRESH_BINARY)
# 製作mask
noise_mask = np.ones(dft_shift.shape, np.uint8)
noise_mask = cv2.circle(noise_mask, (794, 377), 10, (0, 0, 0), -1)
noise_mask = cv2.circle(noise_mask, (805, 411), 10, (0, 0, 0), -1)
noise_mask = cv2.circle(noise_mask, (788, 441), 10, (0, 0, 0), -1)
noise_mask = cv2.circle(noise_mask, (810, 509), 10, (0, 0, 0), -1)
noise_mask = cv2.circle(noise_mask, (790, 542), 10, (0, 0, 0), -1)
noise_mask = cv2.circle(noise_mask, (805, 573), 10, (0, 0, 0), -1)
# Inverse Fast Fourier Transform
fshift = dft_shift*noise_mask
ishift = np.fft.ifftshift(fshift)
iimg = cv2.idft(ishift)
img_back = cv2.magnitude(iimg[:, :, 0], iimg[:, :, 1])
# show result
plt.imshow(img_back, 'gray')
plt.axis('off')
plt.show()
找出的干擾處:
根據下圖找到的6的光點干擾製作mask與原dft圖相乘(fshift = dft_shift*noise_mask),遮掉干擾後印出結果
留言
張貼留言